787 research outputs found

    Genetic variability of the blue and red shrimp Aristeus antennatus in the Western Mediterranean Sea inferred by DNA microsatellite loci

    Get PDF
    Genetic variation at eight microsatellite loci was studied in nine populations of the blue and red shrimp Aristeus antennatus to investigate whether distinct stocks are present in the Western Mediterranean Sea. A high level of gene flow and no evidence of genetic partitioning were discovered. No significant variation was found (FST = 0.00673, P-value = 0.067) even when shrimps from exploited and those from deep-water unexploited grounds were compared. No evidence of reduction or expansion of population size in the recent past was found, as indicated by the bottleneck and interlocus g-tests. Our results are consistent with previous studies using mitochondrial gene methods and allozymes, indicating that, for this species, extensive pelagic larval dispersal and adult migration are probably responsible for the genetic homogeneity observed. In particular, due to a different bathymetric distribution of males and females, reported to be associated with different water masses and hence with possible differential dispersal capacity between sexes, the hypothesis of sex-biased dispersal was tested. Mean values of corrected assignment indices and mean relatedness values were higher for males, suggesting that females are the more widely dispersing sex. Molecular assessment of A. antennatus from the Western Mediterranean provides data of biological and evolutionary interest for the successful management of such a highly valuable fishery resource

    Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation

    Get PDF
    Over the last years, inertial sensing has proven to be a suitable ambulatory alternative to traditional human motion tracking based on optical position measurement systems, which are generally restricted to a laboratory environment. Besides many advantages, a major drawback is the inherent drift caused by integration of acceleration and angular velocity to obtain position and orientation. In addition, inertial sensing cannot be used to estimate relative positions and orientations of sensors with respect to each other. In order to overcome these drawbacks, this study presents an Extended Kalman Filter for fusion of inertial and magnetic sensing that is used to estimate relative positions and orientations. In between magnetic updates, change of position and orientation are estimated using inertial sensors. The system decides to perform a magnetic update only if the estimated uncertainty associated with the relative position and orientation exceeds a predefined threshold. The filter is able to provide a stable and accurate estimation of relative position and orientation for several types of movements, as indicated by the average rms error being 0.033 m for the position and 3.6 degrees for the orientation

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    I-Support: A robotic platform of an assistive bathing robot for the elderly population

    Get PDF
    In this paper we present a prototype integrated robotic system, the I-Support bathing robot, that aims at supporting new aspects of assisted daily-living activities on a real-life scenario. The paper focuses on describing and evaluating key novel technological features of the system, with the emphasis on cognitive human–robot interaction modules and their evaluation through a series of clinical validation studies. The I-Support project on its whole has envisioned the development of an innovative, modular, ICT-supported service robotic system that assists frail seniors to safely and independently complete an entire sequence of physically and cognitively demanding bathing tasks, such as properly washing their back and their lower limbs. A variety of innovative technologies have been researched and a set of advanced modules of sensing, cognition, actuation and control have been developed and seamlessly integrated to enable the system to adapt to the target population abilities. These technologies include: human activity monitoring and recognition, adaptation of a motorized chair for safe transfer of the elderly in and out the bathing cabin, a context awareness system that provides full environmental awareness, as well as a prototype soft robotic arm and a set of user-adaptive robot motion planning and control algorithms. This paper focuses in particular on the multimodal action recognition system, developed to monitor, analyze and predict user actions with a high level of accuracy and detail in real-time, which are then interpreted as robotic tasks. In the same framework, the analysis of human actions that have become available through the project’s multimodal audio–gestural dataset, has led to the successful modeling of Human–Robot Communication, achieving an effective and natural interaction between users and the assistive robotic platform. In order to evaluate the I-Support system, two multinational validation studies were conducted under realistic operating conditions in two clinical pilot sites. Some of the findings of these studies are presented and analyzed in the paper, showing good results in terms of: (i) high acceptability regarding the system usability by this particularly challenging target group, the elderly end-users, and (ii) overall task effectiveness of the system in different operating modes

    Discovery of extreme particle acceleration in the microquasar Cygnus X-3

    Full text link
    The study of relativistic particle acceleration is a major topic of high-energy astrophysics. It is well known that massive black holes in active galaxies can release a substantial fraction of their accretion power into energetic particles, producing gamma-rays and relativistic jets. Galactic microquasars (hosting a compact star of 1-10 solar masses which accretes matter from a binary companion) also produce relativistic jets. However, no direct evidence of particle acceleration above GeV energies has ever been obtained in microquasar ejections, leaving open the issue of the occurrence and timing of extreme matter energization during jet formation. Here we report the detection of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3, an exceptional X-ray binary which sporadically produces powerful radio jets. Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE satellite simultaneously with special spectral states of Cygnus X-3 during the period mid-2007/mid-2009. Our observations show that very efficient particle acceleration and gamma-ray propagation out of the inner disk of a microquasar usually occur a few days before major relativistic jet ejections. Flaring particle energies can be thousands of times larger than previously detected maximum values (with Lorentz factors of 105 and 102 for electrons and protons, respectively). We show that the transitional nature of gamma-ray flares and particle acceleration above GeV energies in Cygnus X-3 is clearly linked to special radio/X-ray states preceding strong radio flares. Thus gamma-rays provide unique insight into the nature of physical processes in microquasars.Comment: 29 pages (including Supplementary Information), 8 figures, 2 tables version submitted to Nature on August 7, 2009 (accepted version available at http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature08578.pdf

    On magnetometer heading updates for inertial pedestrian navigation system

    Get PDF
    A magnetometer is often used to aid heading estimation of a low-cost Inertial Pedestrian Navigation System (IPNS) without which the latter will not be able to accurately estimate heading for more than a few seconds, even with the help of Zero Velocity Update (ZVU). Heading measurements from the magnetometer are typically integrated with gyro heading in an estimation filter such as Kalman Filter (KF) — to best estimate the true IPNS heading, resulting in a better positioning accuracy. However indoors the reliability of these measurements is often questionable because of the magnetic disturbances that can disrupt the measurements. To solve this problem, a filtering method is often used to select the best measurements. However, the importance of the frequency of these measurement updates has not been highlighted. In this paper, the impact of frequency of magnetometer updates on the overall accuracy of the navigation system is presented. The paper starts by discussing the use of a magnetometer in a low-cost IPNS. An exemplary filter to extract reliable heading measurements from the magnetometer is then described. From real field trial results, it will be shown that even if reliable heading measurements may be obtained indoors, it is still insufficient to increase the positioning accuracy of the low-cost IPNS unless it is reliable on every epoch

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore